Solve 17x+10y=118 and 15x-6y=30 by Elimination and Substitution Method
Elimination Method
17x+10y=118 —(i)
15x-6y=30 —(ii)
Multiplyong Equation (i) by 3 and Equation (ii) by 5 we get,
51x+30y=354 —(iii)
75x-30y = 150 —(iv)
Adding Equations (iii) and (iv) we get,
51x+30y + 75x-30y = 354+ 150
⟹ 126x = 504
⟹ x = $\frac{504}{126}$
⟹ x = 4
Substituting the value of x in equation (i) we get,
17(4) +10y = 118
⟹ 68 +10y=118
⟹ 10y=118-68
⟹ 10y=50
⟹ y = $\frac{50}{10}$
⟹ y = 5
Required Solutions are x = 4 , y=5
Substitution Method
17x+10y=118 —(i)
15x-6y=30 —(ii)
From Equation (i) we get,
$17x + 10y = 118$
$\Rightarrow 17x = 118 – 10y$
$\Rightarrow x = \frac{118 – 10y}{17}$ —(iii)
Substituting the value of x in equation (ii) we get,
$15{\mathrm{x}} – 6{\mathrm{y}} = 30$
$\Rightarrow 15\left(\frac{118 – 10y}{17}\right) – 6{\mathrm{y}} = 30$
$\Rightarrow \frac{1770 – 150{\mathrm{y}}}{17} – 6{\mathrm{y}} = 30$
$\Rightarrow \frac{1770 – 150{\mathrm{y}} – 102{\mathrm{y}}}{17} = 30$
$\Rightarrow 1770 – 252{\mathrm{y}} = 510$
$\Rightarrow 1770 – 510 = 252{\mathrm{y}}$
$\Rightarrow 1260 = 252{\mathrm{y}}$
$\Rightarrow {\mathrm{y}} = \frac{1260}{252}$
$\Rightarrow {\mathrm{y}} = 5$
From Equation (iii) we get,
${\mathrm{x}} = \frac{118 – 10{\mathrm{y}}}{17}$
$\Rightarrow {\mathrm{x}} = \frac{118 – 10(5)}{17}$
$\Rightarrow {\mathrm{x}} = \frac{118 – 50}{17}$
$\Rightarrow {\mathrm{x}} = \frac{68}{17}$
$\Rightarrow {\mathrm{x}} = 4$
Required Solutions are x = 4 , y=5