Solve: 2x-y=4.3 and 13/{2(x+y)}=1

Solve: 2x-y=4.3 and 13/{2(x+y)}=1

2x-y=4.3 —(i)

$\frac{13}{2(x + y)} = 1$ —(ii)

From Equation (ii) we get,

$\frac{13}{2(x + y)} = 1$

$\Rightarrow 13 = 2(x + y)$

$\Rightarrow 13 = 2x + 2y$

$\Rightarrow 13 – 2y = 2x$

$\Rightarrow 2x = 13 – 2y$

$\Rightarrow x = \frac{13 – 2y}{2}$ —(iii)

Substituting the value of x in equation (i) we get,

$2\left(\frac{13 – 2y}{2}\right) – {\mathrm{y}} = 4.3$

$\Rightarrow 13 – 2{\mathrm{y}} – {\mathrm{y}} = 4.3$

$\Rightarrow 13 – 3{\mathrm{y}} = 4.3$

$\Rightarrow 13 – 4.3 = 3{\mathrm{y}}$

$\Rightarrow 3{\mathrm{y}} = 8.7$

$\Rightarrow y = \frac{8.7}{3}$

$\Rightarrow y = 2.9$

From Equation (iii) we get,

${\mathrm{x}} = \frac{13 – 2{\mathrm{y}}}{2}$

$\Rightarrow {\mathrm{x}} = \frac{13 – 2(2.9)}{2}$

$\Rightarrow {\mathrm{x}} = \frac{13 – 5.8}{2}$

$\Rightarrow {\mathrm{x}} = \frac{7.2}{2}$

$\Rightarrow x = 3.6$

Therefore Required Solutions are, x = 3.6 , y = 2.9

error: Content is protected !!