Solve 2x+y=35 and 3x+4y=65 hence find the value of x/y

Substitution Method

Solve 2x+y=35 and 3x+4y=65 hence find the value of x/y

2x+y=35 —-(i)

3x+4y=65 —-(ii)

From Equation (i) we get,

y= 35-2x —-(iii)

Substituting the value of y in equation (ii) we get,

3x+4(35-2x) =65

⟹ 3x+140-8x=65

⟹ 140-5x=65

⟹ 140-65= 5x

⟹ 75 =5x

⟹ x =$\frac{75}{5}$

⟹ x=15

From equation (iii) we get,

y=35-2(15)

⟹ y=35-30

⟹ y= 5

Therefore Required Solutions are x=15 , y=5

$\therefore \frac{x}{y} = \frac{15}{5} = 3$ [Ans]

Elemination Method

2x+y=35 —(i)

3x+4y=65 —(ii)

Multiplying Equation (i) by 4 we get,

8x +4y=140 —(iii)

Now Subtracting Equations (iii) and (ii) we get,

(8x+4y) -(3x+4y)=140-65

⟹ 8x+4y -3x -4y = 75

⟹ 5x=75

⟹ x = $\frac{75}{5}$

⟹ x = 15

Now from equation (ii) we get,

3(15)+4y=65 [ x =15]

⟹ 45 +4y =65

⟹ 4y=65-45

⟹ 4y=20

⟹ y= $\frac{20}{4}$

⟹ y = 5

Therefore Required Solutions are x=15 , y=5

$\therefore \frac{x}{y} = \frac{15}{5} = 3$ [Ans]

error: Content is protected !!