Solve: mx – ny = m^2 + n^2 and x + y = 2m [Question Number 4(i) in ML Aggarwal Book Class 9 Chapter 5 Exercise 5.1]
mx – ny = m2 + n2 –(i)
x + y = 2m –(ii)
From equation (ii) we get,
y = 2m-x —(iii)
Substituting the value of y in equation (i) we get,
mx-n(2m-x)=m2+n2
⟹ mx-2mn+nx =m2+n2
⟹mx+nx=m2+n2 +2mn
⟹x(m+n)=(m+n)2
⟹ x=$\frac{(m + n)^2}{(m + n)}$
⟹ x= (m+n)
Now from equation (iii) we get,
y =2m- (m+n) [as x= (m+n)]
⟹ y=2m-m-n
⟹ y= (m-n)
∴ Required Solutions are x =(m+n) and y=(m-n).