Find a^2+b^2+c^2 when a+b+c=m and ab+bc+ca=n

Find a^2+b^2+c^2 when a+b+c=m and ab+bc+ca=n [S.Chand ICSE Class 9 Chapter 3 Exercise 3.1 Expansion and Factorisation Solution ]

(a+b+c)2 =a2+b2+c2+2(ab+bc+ca)

⟹ m2 = (a2+b2+c2) +2n [As a+b+c=m and ab+bc+ca=n ]

⟹ m2-2n = (a2+b2+c2)

Therefore, (a2+b2+c2) = m2– 2n

Similar Problem:

Find ab+bc+ca when a+b+c=12 and a2+b2+c2=50

a+b+c=12

∴ (a+b+c)2 =144

⟹ a2+b2+c2 +2(ab+bc+ca)=144

⟹ 50 + 2(ab+bc+ca)= 144

⟹ 2(ab+bc+ca)=144-50

⟹ 2(ab+bc+ca)=94

⟹ (ab+bc+ca) = $\frac{94}{2}$

⟹ (ab+bc+ca) = 47

∴ (ab+bc+ca) = 47 (Ans)

error: Content is protected !!