If (x+1/x)=2 then find (x^2+1/x^2) ,(x^3+1/x^3) and (x^4+1/x^4)

If (x+1/x)=2 then find (x^2+1/x^2) ,(x^3+1/x^3) and (x^4+1/x^4) [S.Chad ICSE Class 9 Chapter 3 Exercise 3.1 Expansion and Factorisation Solution]

(i) ${\mathrm{x}}^2 + \frac{1}{{\mathrm{x}}^2}$

$\left(x + \frac{1}{x}\right)$ = 2

$\therefore \left(x + \frac{1}{x}\right)^2$ = 4

$\Rightarrow x^2 + 2.x\ldotp \frac{1}{x} + \frac{1}{x^2}$ = 4

$\Rightarrow x^2 + \frac{1}{x^2} + 2$ = 4

$\Rightarrow x^2 + \frac{1}{x^2}$ = 4 – 2

$\Rightarrow x^2 + \frac{1}{x^2}$ = 2

$\therefore x^2 + \frac{1}{x^2}$= 2 [Ans]

(ii) ${\mathrm{x}}^3 + \frac{1}{{\mathrm{x}}^3}$

$\left({\mathrm{x}} + \frac{1}{{\mathrm{x}}}\right)$ = 2

$\therefore \left({\mathrm{x}} + \frac{1}{{\mathrm{x}}}\right)^3$ = 23

$\Rightarrow {\mathrm{x}}^3 + \frac{1}{{\mathrm{x}}^3} + 3.{\mathrm{x}}\ldotp \frac{1}{{\mathrm{x}}}({\mathrm{x}} + \frac{1}{{\mathrm{x}}})$ = 8

$\Rightarrow {\mathrm{x}}^3 + \frac{1}{{\mathrm{x}}^3}$ + 3(2) = 8

$\Rightarrow {\mathrm{x}}^3 + \frac{1}{{\mathrm{x}}^3}$ + 6 = 8

$\Rightarrow {\mathrm{x}}^3 + \frac{1}{{\mathrm{x}}^3}$ = 8 – 6

$\Rightarrow {\mathrm{x}}^3 + \frac{1}{{\mathrm{x}}^3}$ = 2

$\therefore {\mathrm{x}}^3 + \frac{1}{{\mathrm{x}}^3}$ = 2 [Ans]

(iii) ${\mathrm{x}}^4 + \frac{1}{{\mathrm{x}}^4}$

${\mathrm{x}}^2 + \frac{1}{{\mathrm{x}}^2}$ = 2

$\Rightarrow \left({\mathrm{x}}^2 + \frac{1}{{\mathrm{x}}^2}\right)^2$ = 22

$\Rightarrow \left({\mathrm{x}}^2\right)^2 + 2.{\mathrm{x}}^2\ldotp \frac{1}{{\mathrm{x}}^2} + \left(\frac{1}{{\mathrm{x}}^2}\right)^2$ = 4

$\Rightarrow {\mathrm{x}}^4 + \frac{1}{{\mathrm{x}}^4} + 2$ = 4

$\Rightarrow {\mathrm{x}}^4 + \frac{1}{{\mathrm{x}}^4}$ = 4 – 2

$\Rightarrow {\mathrm{x}}^4 + \frac{1}{{\mathrm{x}}^4}$ = 2

$\therefore {\mathrm{x}}^4 + \frac{1}{{\mathrm{x}}^4}$ = 2 [Ans]

error: Content is protected !!