Solve 7/x+8/y=2 and 2/x+3/y=17 By Elimination and Substitution Method

Solve 7/x+8/y=2 and 2/x+3/y=17 By Elimination and Substitution Method

Substitution method

Given Equations are,

$\frac{7}{{\mathrm{x}}} + \frac{8}{{\mathrm{y}}} = 2$ —(i)

$\frac{2}{{\mathrm{x}}} + \frac{3}{{\mathrm{y}}} = 17$ —(ii)

Let, $\frac{1}{{\mathrm{x}}}$=u and $\frac{1}{{\mathrm{y}}}$ = v

Then Equations (i) and (ii) Become,

7u+8v=2 —(iii)

and 2u+3v=17 —(iv)

From Equation (iii) we get,

7u= 2-8v

$\Rightarrow {\mathrm{u}} = \frac{2 – 8{\mathrm{v}}}{7}$ —(v)

Substituting the value of u in equation (iv) we get,

$2{\mathrm{u}} + 3{\mathrm{v}} = 17$

$\Rightarrow 2\left(\frac{2 – 8{\mathrm{v}}}{7}\right) + 3{\mathrm{v}} = 17$

$\Rightarrow \frac{4 – 16{\mathrm{v}}}{7} + 3{\mathrm{v}} = 17$

$\Rightarrow \frac{4 – 16{\mathrm{v}} + 21{\mathrm{v}}}{7} = 17$

$\Rightarrow 4 + 5{\mathrm{v}} = 119$

$\Rightarrow 5{\mathrm{v}} = 119 – 4$

$\Rightarrow 5{\mathrm{v}} = 115$

$\Rightarrow {\mathrm{v}} = \frac{115}{5}$

$\Rightarrow {\mathrm{v}} = 23$

From equation (v) we get,

${\mathrm{u}} = \frac{2 – 8{\mathrm{v}}}{7}$

$\Rightarrow {\mathrm{u}} = \frac{2 – 8(23)}{7}$

$\Rightarrow {\mathrm{u}} = \frac{2 – 184}{7}$

$\Rightarrow {\mathrm{u}} = \frac{ – 182}{7}$

$\Rightarrow {\mathrm{u}} = – 26$

$\therefore {\mathrm{x}} = – \frac{1}{26}$ and ${\mathrm{y}} = \frac{1}{23}$

Elimination Method

Given Equations are,

$\frac{7}{{\mathrm{x}}} + \frac{8}{{\mathrm{y}}} = 2$ —(i)

$\frac{2}{{\mathrm{x}}} + \frac{3}{{\mathrm{y}}} = 17$ —(ii)

Let, $\frac{1}{{\mathrm{x}}}$=u and $\frac{1}{{\mathrm{y}}}$ = v

Then Equations (i) and (ii) Become,

7u+8v=2 —(iii)

and 2u+3v=17 —(iv)

Multiplying Equation (iii) by 3 and Equation (iv) by 8 we get,

21u+24v =6 —(v)

16u+24v=136 —(vi)

Subtracting (v) from (vi) we get,

16u+24v – 21u-24v = 136 – 6

⟹ -5u = 130

⟹ u= -26

Substituting the value of u in equation (iv) we get,

7u+8v=2

⟹ 7(-26)+8v=2

⟹ – 182+8v=2

⟹ 8v= 2+182

⟹ 8v =184

⟹ v = 23

$\therefore {\mathrm{x}} = – \frac{1}{26}$ and ${\mathrm{y}} = \frac{1}{23}$

error: Content is protected !!