Solve:11/x-7/y=1 and 9/x-4/y=6

Solve: 11/x-7/y=1 and 9/x-4/y=6

$\frac{11}{x} – \frac{7}{y} = 1$ —-(i)

$\frac{9}{x} – \frac{4}{y} = 6$ —-(ii)

Let, $\frac{1}{x}$ =u and $\frac{1}{y}$=v

Then Equations (i) and (ii) can be written as-

11u-7v=1 —(iii)

and 9u -4v=6 —(iv)

Multiplying equation (iii) by 4 and equation (iv) by 7 we get,

44u-28v=4 —(v)

63u-28v=42 —(vi)

Subtracting Equation (v) from (vi) we get,

(63u-28v)-(44u-28v)=42-4

⇒ 63u-28v-44u+28v = 38

⇒ 19u = 38

⇒ u=$\frac{38}{19}$

⇒ u = 2

Substituting the value of u in equation (iii) we get,

11u-7v=1

⇒ 11(2)-7v=1

⇒ 22 -7v=1

⇒ 22-1=7v

⇒ 21 =7v

⇒ v= $\frac{21}{7}$

⇒ v= 3

∴ u = 2 and v = 3

∴ x = $\frac{1}{2}$ and y=$\frac{1}{3}$

error: Content is protected !!