Solve: 2x-y=4.3 and 13/{2(x+y)}=1
2x-y=4.3 —(i)
$\frac{13}{2(x + y)} = 1$ —(ii)
From Equation (ii) we get,
$\frac{13}{2(x + y)} = 1$
$\Rightarrow 13 = 2(x + y)$
$\Rightarrow 13 = 2x + 2y$
$\Rightarrow 13 – 2y = 2x$
$\Rightarrow 2x = 13 – 2y$
$\Rightarrow x = \frac{13 – 2y}{2}$ —(iii)
Substituting the value of x in equation (i) we get,
$2\left(\frac{13 – 2y}{2}\right) – {\mathrm{y}} = 4.3$
$\Rightarrow 13 – 2{\mathrm{y}} – {\mathrm{y}} = 4.3$
$\Rightarrow 13 – 3{\mathrm{y}} = 4.3$
$\Rightarrow 13 – 4.3 = 3{\mathrm{y}}$
$\Rightarrow 3{\mathrm{y}} = 8.7$
$\Rightarrow y = \frac{8.7}{3}$
$\Rightarrow y = 2.9$
From Equation (iii) we get,
${\mathrm{x}} = \frac{13 – 2{\mathrm{y}}}{2}$
$\Rightarrow {\mathrm{x}} = \frac{13 – 2(2.9)}{2}$
$\Rightarrow {\mathrm{x}} = \frac{13 – 5.8}{2}$
$\Rightarrow {\mathrm{x}} = \frac{7.2}{2}$
$\Rightarrow x = 3.6$
Therefore Required Solutions are, x = 3.6 , y = 2.9