Solve: x-y=0.9 and 11/(x+y)=2
x-y=0.9 —(i)
$\frac{11}{{\mathrm{x}} + {\mathrm{y}}}$ = 2
$\frac{11}{{\mathrm{x}} + {\mathrm{y}}} = 2$
$\Rightarrow \frac{11}{2} = {\mathrm{x}} + {\mathrm{y}}$
$\Rightarrow {\mathrm{x}} + {\mathrm{y}} = \frac{11}{2}$ —(ii)
Adding equations (i) and (ii) we get,
x-y +x+y = 0.9+$\frac{11}{2}$
⇒ 2x=$\frac{9}{10} + \frac{11}{2}$
⇒ 2x= $\frac{9 + 55}{10}$
⇒ 2x= $\frac{64}{10} $
⇒ 2x = 6.4
⇒ x = $\frac{6.4}{2}$
⇒ x = 3.2
Now from equation (i) we get,
x-y=0.9
⇒ 3.2 -y = 0.9
⇒ 3.2 – 0.9= y
⇒ y = 2.3
Therefoe Required Solutions are x = 3.2 and y = 2.3.