Solve: x+2y=3/2 and 2x+y=3

Solve: x+2y=3/2 and 2x+y=3

Elimination Method

x+2y=$\frac{3}{2}$

⇒ 2(x+2y) =3

⇒ 2x+4y=3 —(i)

2x+y=3 —-(ii)

Subtracting Equation (ii) from (i) we get,

(2x+4y) -(2x+y)=3-3

⇒ 2x+4y -2x – y = 0

⇒ 3y = 0

⇒ y = $\frac{0}{3}$

⇒ y = 0

From Euqation (ii)

2x+0=3

⇒ 2x = 3

⇒ x = $\frac{3}{2}$

Required Solutions are x = $\frac{3}{2}$ and y = 0

Substitution Method

x+2y=$\frac{3}{2}$

⇒ 2(x+2y) =3

⇒ 2x+4y=3 —(i)

2x+y=3 —-(ii)

From equation (i) we get,

⇒ 2x = 3-4y

⇒ x = $\frac{3 – 4y}{2}$ —(iii)

Substituting the value of x in equation (ii) we get,

$2\left(\frac{3 – 4y}{2}\right) + 4y = 3$

$\Rightarrow 3 – 4y + 4y = 3$

$\Rightarrow 3 – 8y = 3$

$\Rightarrow 3 – 3 = 8y$

$\Rightarrow 8y = 0$

$\Rightarrow y = \frac{0}{8}$

$\Rightarrow y = 0$

From equation (iii) we get,

$x = \frac{3 – 4y}{2}$

$\Rightarrow x = \frac{3 – 4.0}{2}$

$\Rightarrow x = \frac{3}{2}$

Required Solutions are x = $\frac{3}{2}$ and y = 0

error: Content is protected !!