Solve: x-4=4(y+2) and 3(x-2)=2y+20

Solve: x-4=4(y+2) and 3(x-2)=2y+20

Elimination Method

x-4=4(y+2) —-(i)

3(x-2)=2y+20 —-(ii)

From Equation (i) we get,

x-4=4y+8

⇒ x-4y=4+8

⇒ x-4y = 12 —(iii)

From Equation (ii) we get,

3(x-2)=2y+20

⇒ 3x – 6 =2y+20

⇒ 3x-2y=6+20

⇒ 3x-2y=26 —-(iv)

Multiplying Equation (iii) by 3 we get,

3x -12y = 36 —(v)

Subtracting Equation (iv) from (v) we get,

(3x -12y)-(3x-2y) = 36-26

⇒ 3x -12y -3x +2y = 10

⇒ -10y = 10

⇒ y= $\frac{10}{ – 10}$

⇒ y = -1

From Equation (iv) we get,

3x-2y=26

⇒ 3x -2(-1)=26

⇒ 3x +2 = 26

⇒ 3x = 26-2

⇒ 3x = 24

⇒ x = $\frac{24}{3}$

⇒ x = 8

Required Solutions are x = 8 , y=-1 [Ans]

Substitution Method

x-4=4(y+2) —-(i)

3(x-2)=2y+20 —-(ii)

From equation (i) we get,

x-4=4(y+2)

⇒ x-4 =4y +8

⇒ x-4y =4+8

⇒ x-4y = 12

⇒ x = 12+4y —(iii)

Substituting the value of x in equation (ii) we get,

3(x-2)=2y+20

⇒ 3(12+4y-2)=2y+20

⇒ 3(4y+10) =2y+20

⇒ 12y + 30 = 2y+20

⇒ 12y-2y= 20 -30

⇒ 10y = -10

⇒ y = $\frac{ – 10}{10}$

⇒ y =-1

From (iii) we get,

x= 12+4y

⇒ x = 12+4(-1)

⇒ x =12-4

⇒ x =8

Required Solutions are x = 8 , y=-1 [Ans]

error: Content is protected !!