Solve 3x+4y=25 and 5x-6y=-9 by Elimination and Substitution Method
Elimination Method
3x+4y=25 —-(i)
5x-6y=-9 —-(ii)
Multiplying Equation (i) by 3 and Equation (ii) by 2 we get,
9x +12y = 75 —-(iii)
and 10x -12y= -18 —-(iv)
Adding Equation (iii) and (iv) we get,
(9x +12y)+(10x -12y)=75+(-18)
⟹ 9x +12y +10x -12y = 75-18
⟹ 19x = 57
⟹ x = $\frac{57}{19}$
⟹ x = 3
Substituting the value of x in equation (i) we get,
3(3)+4y=25
⟹ 9+4y=25
⟹ 4y=25-9
⟹ 4y =16
⟹y= $\frac{16}{4}$
⟹ y= 4
Required Solution x=3 , y=4.
Substitution Method
3x+4y=25 —-(i)
5x-6y=-9 —-(ii)
From Equation (i) we get,
3x= 25-4y
$\Rightarrow x = \frac{25 – 4y}{3}$ —(iii)
Substituting the value of x in equation (ii) we get,
$5{\mathrm{x}} – 6{\mathrm{y}} = – 9$
$\Rightarrow 5\left(\frac{25 – 4y}{3}\right) – 6{\mathrm{y}} = – 9$
$\Rightarrow \frac{125 – 20{\mathrm{y}}}{3} – 6{\mathrm{y}} = – 9$
$\Rightarrow \frac{125 – 20{\mathrm{y}} – 18{\mathrm{y}}}{3} = – 9$
$\Rightarrow 125 – 38{\mathrm{y}} = – 27$
$\Rightarrow 125 + 27 = 38{\mathrm{y}}$
$\Rightarrow 38{\mathrm{y}} = 152$
$\Rightarrow {\mathrm{y}} = \frac{152}{38}$
$\Rightarrow {\mathrm{y}} = 4$
From Equation (iii) we get,
${\mathrm{x}} = \frac{25 – 4{\mathrm{y}}}{3}$
$\Rightarrow {\mathrm{x}} = \frac{25 – 4(4)}{3}$
$\Rightarrow {\mathrm{x}} = \frac{25 – 16}{3}$
$\Rightarrow {\mathrm{x}} = \frac{9}{3}$
$\Rightarrow {\mathrm{x}} = 3$
Required Solution x=3 , y=4.