(i) If a-b=2 and a^2+b^2=36 then find ab (ii) If a-b=2 ab =63 find a^2+b^2 and (a+b)^2 [S.Chand ICSE Class 9 Chapter 3 Exercise 3.1 Expansion and Factorisation Solution ]
a-b=2
∴ (a-b)2=4
⇒ a2-2ab+b2 = 4
⇒ a2+b2– 2ab =4
⇒ 36 -2ab = 4 [As a^2+b^2=36]
⇒ 36-4 =2ab
⇒ 2ab = 32
⇒ ab = $\frac{32}{2}$
⇒ ab=16
∴ ab = 16 [Ans]
If a-b=2 ab =63 find a2+b2 and (a+b)2
(a-b)2 = a2-2ab+b2
⟹ (a-b)2 =a2+b2 -2ab
⟹ (2)2 =a2+b2 -2(63)
⟹ 4 =a2+b2 -126
⟹ 4+126=a2+b2
⟹ a2+b2= 130
∴ a2+b2= 130
Again, (a+b)2
= a2+2ab+b2
= a2+b2+2ab
=130 +2(63)
=130+126
= 256
∴ (a+b)2 = 256
⟹ (a+b) =$\pm \sqrt{256}$
⟹ (a+b) =$\pm 16$
∴ (a+b) =$\pm 16$