Solve: x/3=y/6 and 4x/3+2y=4
$\frac{x}{3} = \frac{y}{6}$ —(i)
$\frac{4x}{3} + 2y = 4$ —(ii)
From Equation (i) we get,
$\frac{x}{3} = \frac{y}{6}$
$\Rightarrow 6{\mathrm{x}} = 3{\mathrm{y}}$
$\Rightarrow {\mathrm{x}} = \frac{3{\mathrm{y}}}{6}$
$\Rightarrow {\mathrm{x}} = \frac{{\mathrm{y}}}{2}$ —(iii)
Substituting the value of x in equation (ii) we get,
$\frac{4{\mathrm{x}}}{3} + 2{\mathrm{y}} = 4$
$\Rightarrow \frac{4}{3}\left(\frac{{\mathrm{y}}}{2}\right) + 2{\mathrm{y}} = 4[\because {\mathrm{x}} = \frac{{\mathrm{y}}}{2}]$
$\Rightarrow \frac{2{\mathrm{y}}}{3} + 2{\mathrm{y}} = 4$
$\Rightarrow \frac{2{\mathrm{y}} + 6{\mathrm{y}}}{3} = 4$
$\Rightarrow 8{\mathrm{y}} = 12$
$\Rightarrow {\mathrm{y}} = \frac{12}{8}$
$\Rightarrow {\mathrm{y}} = \frac{3}{2}$
Now from (iii) we get,
${\mathrm{x}} = \frac{{\mathrm{y}}}{2}$
$\Rightarrow {\mathrm{x}} = \frac{\frac{3}{2}}{2}$
$\Rightarrow {\mathrm{x}} = \frac{3}{4}$
Therefore Required Solutions are x =$\frac{3}{4}$ and y=$\frac{3}{2}$