Solve: x-y=0.9 and 11/(x+y)=2

Solve: x-y=0.9 and 11/(x+y)=2

x-y=0.9 —(i)

$\frac{11}{{\mathrm{x}} + {\mathrm{y}}}$ = 2

$\frac{11}{{\mathrm{x}} + {\mathrm{y}}} = 2$

$\Rightarrow \frac{11}{2} = {\mathrm{x}} + {\mathrm{y}}$

$\Rightarrow {\mathrm{x}} + {\mathrm{y}} = \frac{11}{2}$ —(ii)

Adding equations (i) and (ii) we get,

x-y +x+y = 0.9+$\frac{11}{2}$

⇒ 2x=$\frac{9}{10} + \frac{11}{2}$

⇒ 2x= $\frac{9 + 55}{10}$

⇒ 2x= $\frac{64}{10} $

⇒ 2x = 6.4

⇒ x = $\frac{6.4}{2}$

⇒ x = 3.2

Now from equation (i) we get,

x-y=0.9

⇒ 3.2 -y = 0.9

⇒ 3.2 – 0.9= y

⇒ y = 2.3

Therefoe Required Solutions are x = 3.2 and y = 2.3.

error: Content is protected !!