Solve: x+y=7xy and 2/x +3/y=17
Elemination method
x+y=7xy —(i)
$\frac{2}{x} + \frac{3}{y} = 17$ —(ii)
From Equation (i) we get,
$\frac{x + y}{xy} = 7$
$\Rightarrow \frac{x}{xy} + \frac{y}{xy} = 7$
$\Rightarrow \frac{1}{y} + \frac{1}{x} = 7$ —(iii)
Multiplying Equation (iii) by 2 we get,
$\frac{2}{x} + \frac{2}{y} = 14$ —-(iv)
Now Subtracting Equation (iv) from equation (ii) we get,
$\left(\frac{2}{x} + \frac{3}{y}\right) – \left(\frac{2}{x} + \frac{2}{y}\right) = 17 – 14$
$\Rightarrow \frac{2}{x} + \frac{3}{y} – \frac{2}{x} – \frac{2}{y} = 3$
$\Rightarrow \frac{3}{y} – \frac{2}{y} = 3$
$\Rightarrow \frac{1}{y} = 3$
$\Rightarrow y = \frac{1}{3}$
Substituting the value of y in equation (iii) we get,
$\frac{1}{y} + \frac{1}{x} = 7$
$\Rightarrow \frac{1}{\left(\frac{1}{3}\right)} + \frac{1}{x} = 7$
$\Rightarrow 3 + \frac{1}{x} = 7$
$\Rightarrow \frac{1}{x} = 7 – 3$
$\Rightarrow \frac{1}{x} = 4$
$\Rightarrow {\mathrm{x}} = \frac{1}{4}$
Therefore Required Solutions are ${\mathrm{x}} = \frac{1}{4},{\mathrm{y}} = \frac{1}{3}$
Substitution Method
x+y=7xy —(i)
$\frac{2}{x} + \frac{3}{y} = 17$ —(ii)
From Equation (i) we get,
x=7xy-y
⟹ x = y(7x-1)
⟹${\mathrm{y}} = \frac{{\mathrm{x}}}{7{\mathrm{x}} – 1}$ —(iii)
Substituting the value of y in equation (ii) we get,
$\frac{2}{x} + \frac{3}{y} = 17$
$\Rightarrow \frac{2}{x} + \frac{3}{\left(\frac{x}{7x – 1}\right)} = 17$
$\Rightarrow \frac{2}{x} + \frac{3(7x – 1)}{x} = 17$
$\Rightarrow \frac{2}{x} + \frac{21x – 3}{x} = 17$
$\Rightarrow \frac{2 + 21x – 3}{x} = 17$
$\Rightarrow \frac{21x – 1}{x} = 17$
$\Rightarrow 21x – 1 = 17x$
$\Rightarrow 21x – 17x = 1$
$\Rightarrow 4x = 1$
$\Rightarrow x = \frac{1}{4}$
From equation (iii) we get,
${\mathrm{y}} = \frac{{\mathrm{x}}}{7{\mathrm{x}} – 1}$
$\Rightarrow {\mathrm{y}} = \frac{\frac{1}{4}}{\frac{7}{4} – 1}$
$\Rightarrow {\mathrm{y}} = \frac{\frac{1}{4}}{\frac{7 – 4}{4}}$
$\Rightarrow {\mathrm{y}} = \frac{\frac{1}{4}}{\frac{3}{4}}$
$\Rightarrow {\mathrm{y}} = \frac{1}{4} \div \frac{3}{4}$
$\Rightarrow {\mathrm{y}} = \frac{1}{4} \times \frac{4}{3}$
$\Rightarrow {\mathrm{y}} = \frac{1}{3}$
Therefore Required Solutions are ${\mathrm{x}} = \frac{1}{4},{\mathrm{y}} = \frac{1}{3}$