ProveThat, $1 + \frac{\cos 105 + cos165}{\sin 105 + sin375}$ = 0

ProveThat, $1 + \frac{\cos 105 + cos165}{\sin 105 + sin375}$ = 0

Solution:

$L\ldotp H\ldotp S: 1 + \frac{\cos 105° + cos165°}{\sin 105° + sin375°}$
= $1 + \frac{2cos\frac{105° + 165°}{2}\cos \frac{105° – 165°}{2}}{2sin\frac{105° + 375°}{2}\cos \frac{105° – 375°}{2}}$
= $1 + \frac{2cos\frac{270°}{2}\cos \left( – \frac{60°}{2}\right)}{2sin\frac{480°}{2}\cos \left( – \frac{270°}{2}\right)}$
= $1 + \frac{2cos135°cos30°}{2sin240°cos135°}$
= $1 + \frac{\cos 30°}{\sin 240°}$
=$1 + \frac{\cos 30°}{\sin (180° + 60°)}$
= $1 + \frac{\cos 30°}{ – sin60°}$
= $1 – \frac{\cos 30°}{\sin 60°}$
= $1 – \frac{\cos 30°}{\cos 30°}$
= 1 – 1
= 0 = $R\ldotp H\ldotp S$ [Proved]

Leave a Comment

error: Content is protected !!