Prove that,4 sin15° sin75°=$\sqrt{2}$ (cos 105° + sin75°)
L.H.S:
4 sin15° sin75°
= 2 (2 sin15° sin75°)
= 2{cos(15°+75°)+cos(15°-75°)}
=2 {cos90° + cos(-60°)}
=2 (cos90° + cos60°)
= 2 $\left(0 + \frac{1}{2}\right)$
= 2×$\frac{1}{2}$
= 1
R.H.S:
$\sqrt{2}$ (cos 105° + sin75°)
= $\sqrt{2}$ {cos105°+ sin(90°-15°)}
= $\sqrt{2}$ (cos105°+cos15°)
= $\sqrt{2}$ ×2 cos $\frac{105° + 15°}{2}$ cos $\frac{105° – 15°}{2}$
= 2 $\sqrt{2}$ cos 60° cos45°
= 2$\sqrt{2}$ × $\frac{1}{2}$× $\frac{1}{\sqrt{2}}$
= 1
∴L.H.S = R.H.S [Proved]