Prove that, sin19°+sin41°+sin83°=sin23°+sin37°+sin79°

Prove that, sin19°+sin41°+sin83°=sin23°+sin37°+sin79°

Solution:

L.H.S: sin19°+sin41°+sin83°

= 2 sin$\frac{19° + 41°}{2}$ cos $\frac{19° -41°}{2}$  +sin83°

= 2 sin $\left(\frac{60°}{2}\right)$ cos $\left( – \frac{22°}{2}\right)$ +sin83°

= 2 sin30° cos11°+sin83°

= 2×$\frac{1}{2}$ coc 11° +sin83°

= cos11°+sin(90°-7°)

=cos11°+cos7°

R.H.S: sin23°+sin37°+sin79°

=2sin $\frac{23° + 37°}{2}$ cos $\frac{23° – 37°}{2}$  +sin79°

= 2sin $\frac{60°}{2}$ cos $\left( – \frac{14°}{2}\right)$ +sin79°

= 2sin30° cos7°+sin79°

=2×$\frac{1}{2}$×cos7°+sin79°

= cos7° +sin79°

= cos7°+sin(90°-11°)

= cos7°+cos11°

∴ L.H.S=R.H.S [Proved]

Leave a Comment

error: Content is protected !!