Prove that, cosα cos(120+α) cos(240+α)= $\frac{1}{4}$ cos3α

Prove that, cosα cos(120+α) cos(240+α)= $\frac{1}{4}$ cos3α

$cos\alpha cos(120 + \alpha )cos(240 + \alpha )$ = $\frac{1}{4}cos3\alpha$

Solution:

cosα cos(120°+α) cos(240°+α)

= $\frac{1}{2}$ cosα{2 cos(120°+α) cos(240°+α)}

=  $\frac{1}{2}$ cosα {cos(120°+α+240°+α)+cos(120°+α-240°-α)}

= $\frac{1}{2}$ cosα {cos(360°+2α)+cos(-120°)}

= $\frac{1}{2}$  cosα (cos2α+cos120°)

= $\frac{1}{2}$  cosα (cos2α-$\frac{1}{2}$)

=  $\frac{1}{2}$ cosα cos2α -$\frac{1}{2}$   cosα

=$\frac{1}{4}$  (2cosα cos2α) -$\frac{1}{2}$  cosα

= $\frac{1}{4}$  {cos(α+2α) +cos(α-2α)} -$\frac{1}{2}$ cosα

= $\frac{1}{4}$  (cos3α +cosα) – $\frac{1}{2}$ cosα

=  $\frac{1}{4}$ cos3α + $\frac{1}{4}$  cosα – $\frac{1}{2}$  cosα

= $\frac{1}{4}$  cos3α [Proved]

Leave a Comment

error: Content is protected !!