Express 4 sinA cosB cosC as the sum of four sines
4sinAcosBcosC
=2(2sinAcosB)cosC
= 2{ sin(A + B) + cos(A – B)}cosC
=2sin(A + B)cosC + 2cos(A – B)cosC
= sin{ (A + B) + C} + sin{ (A + B) – C)} + 2sin{ (A – B) + C} – sin{ (A – B) – C}
= sin(A+B+C) + sin(A+B-C) + 2sin(A-B+C) – sin(A-B-C)
∴ 4sinAcosBcosC = sin(A+B+C) + sin(A+B-C) + 2sin(A-B+C) – sin(A-B-C)[Proved]