If sinθ + sinΦ=a and cos θ +cosΦ=b prove that $tan\frac{\theta – \phi }{2}$ = $\pm \sqrt{\frac{4 – a^2 – b^2}{a^2 + b^2}}$ = $\pm \sqrt{\frac{4 – a^2 – b^2}{a^2 + b^2}}$
If sinθ + sinΦ=a and cos θ +cosΦ=b prove that $tan\frac{\theta – \phi }{2}$ = $\pm \sqrt{\frac{4 – a^2 – b^2}{a^2 + b^2}}$ = $\pm \sqrt{\frac{4 – a^2 – b^2}{a^2 + b^2}}$
Solution:
sinθ + sinΦ=a —(i)
cos θ +cosΦ=b —-(ii)
Squaring equations (i) and (ii) and then adding we get,
(sinθ + sinΦ)2+( cos θ +cosΦ)2=a2+b2
or, sin2θ + 2 sinθ sinΦ + sin2Φ + cos2θ +2 cosθ cosΦ + cos2Φ = a2+b2
or, sin2 θ+ cos2 θ+ sin2 θ+ sin2 Φ+ 2 sinθ sinΦ+2 cosθ cosΦ= a2+b2
or, 1+1 +2(cosθ cosΦ+sinθ sinΦ)= a2+b2
or, 2+2 cos(θ-Φ)= a2+b2
or, 2cos(θ-Φ)= a2+b2-2
or,$\cos \left({\mathrm{\theta}} – {\mathrm{\phi}}\right)$ = $\frac{{\mathrm{a}}^2 + {\mathrm{b}}^2 – 2}{2}$
$2c{\mathrm{os}}^2\frac{{\mathrm{\theta}} – {\mathrm{\phi}}}{2} – 1$ = $\frac{{\mathrm{a}}^2 + {\mathrm{b}}^2 – 2}{2}$
or,$2cos^2\frac{{\mathrm{\theta}} – {\mathrm{\phi}}}{2}$ = $\frac{{\mathrm{a}}^2 + {\mathrm{b}}^2 – 2}{2} + 1$
or,$2cos^2\frac{{\mathrm{\theta}} – {\mathrm{\phi}}}{2}$ = $\frac{{\mathrm{a}}^2 + {\mathrm{b}}^2}{2}$
or,$cos^2\frac{{\mathrm{\theta}} – {\mathrm{\phi}}}{2}$ = $\frac{{\mathrm{a}}^2 + {\mathrm{b}}^2}{4}$
or,$sec^2\frac{{\mathrm{\theta}} – {\mathrm{\phi}}}{2}$ = $\frac{4}{{\mathrm{a}}^2 + {\mathrm{b}}^2}$
or,$tan^2\frac{{\mathrm{\theta}} – {\mathrm{\phi}}}{2}$ = $\frac{4}{{\mathrm{a}}^2 + {\mathrm{b}}^2} – 1$
or,$tan^2\frac{{\mathrm{\theta}} – {\mathrm{\phi}}}{2}$ = $\frac{4 – a^2 – b^2}{a^2 + b^2}$
or,$tan\frac{{\mathrm{\theta}} – {\mathrm{\phi}}}{2}$ = $\pm \sqrt{\frac{4 – a^2 – b^2}{a^2 + b^2}}$
$\therefore tan\frac{{\mathrm{\theta}} – {\mathrm{\phi}}}{2}$ = $\pm \sqrt{\frac{4 – a^2 – b^2}{a^2 + b^2}}$[Proved]