Skip to content
Limit x Tends to Zero $\lim_{x\rightarrow 0}\frac{xtanx}{1 – cosx}$
$\lim_{x\rightarrow 0}\frac{xtanx}{1 – cosx}$
= $\lim_{x\rightarrow 0}\frac{xsinx}{\cos x(1 – cos x)}$
=$\lim_{x\rightarrow 0}\frac{xsinx(1 + cos x)}{\cos x(1 – cos x)(1 + cos x)}$
= $\lim_{x\rightarrow 0}\frac{xsinx(1 + cos x)}{\cos x(1 – cos^2x)}$
= $\lim_{x\rightarrow 0}\frac{xsinx(1 + cos x)}{\cos xsin^2x}$
= $\lim_{x\rightarrow 0}\frac{x(1 + cos x)}{\cos xsinx}$
= $\lim_{x\rightarrow 0}\frac{2x(1 + cos x)}{2\cos xsinx}$
= $\lim_{x\rightarrow 0}\frac{(1 + cos x)}{\frac{\sin 2x}{2}}$
= $\frac{\lim_{x\rightarrow 0}(1 + cos x)}{\lim_{x\rightarrow 0}\frac{\sin 2x}{2}}$
= $\frac{1 + 1}{1}$
= 2
error: Content is protected !!