Prove that sin5x cos2x+cos6x sin3x=sin8x cosx

Prove that sin5x cos2x+cos6x sin3x=sin8x cosx

সমাধানঃ  

sin 5x cos2x + cos6x sin3x

= $\frac{1}{2}$ (2 sin5x cos2x + 2cos6x sin3x)

= $\frac{1}{2}$  {sin (5x+2x) + sin(5x-2x) + sin(6x+3x)- sin(6x-3x)}

= $\frac{1}{2}$  (sin7x + sin 3x+ sin 9x– sin 3x}

= $\frac{1}{2}$  (sin9x + sin7x)

= $\frac{1}{2}$×2 sin $\frac{9x + 7x}{2}$ cos $\frac{9x – 7x}{2}$

=sin $\frac{16x}{2}$ cos $\frac{2x}{2}$

= sin8x cosx

Leave a Comment

error: Content is protected !!