Prove that, cos (60° +A) + cos(60°-A) – cosA = 0

Prove that, cos (60° +A) + cos(60°-A) – cosA = 0

Solution:

cos (60° +A) + cos(60°-A) – cosA

= 2 cos $\left(\frac{60° + A + 60° – A}{2}\right)$ cos$\left(\frac{60° + A – 60° + A}{2}\right)$ – cosA

= 2 cos $\left(\frac{120°}{2}\right)$ cos $\frac{2A}{2}$ – cosA

= 2 cos 60° cos A – cosA

= 2 × $\frac{1}{2}$ ×cosA – cosA

= cosA – cosA

= 0

Leave a Comment

error: Content is protected !!