Prove that cos 80° – cos40° + $\sqrt{3}$ cos70° = 0

Prove that cos 80° – cos40° + $\sqrt{3}$ cos70° = 0

Solution:

cos 80° – cos40° + $\sqrt{3}$  cos70°

= 2 sin $\frac{80° + 40°}{2}$ sin $\frac{40° – 80°}{2}$ + $\sqrt{3}$  cos70°  

= 2 sin $\frac{120}{2}$ sin $\left( – \frac{40}{2}\right)$ + $\sqrt{3}$ cos70°

= -2 sin 60° sin20°+ $\sqrt{3}$  cos70°

= -2 × $\frac{\sqrt{3}}{2}$ sin20° + $\sqrt{3}$  cos70°

= -$\sqrt{3}$ sin20° + $\sqrt{3}$  cos(90°-20°)

= -$\sqrt{3}$ sin20° + $\sqrt{3}$  sin 20°

= 0

∴ cos 80° – cos40° + $\sqrt{3}$ cos70° = 0 [Proved]

Leave a Comment

error: Content is protected !!